Search results for "Orbital-free density functional theory"
showing 10 items of 10 documents
Nuclear energy density optimization: Shell structure
2013
Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose c…
Parameter-free density functional for the correlation energy in two dimensions
2010
Accurate treatment of the electronic correlation in inhomogeneous electronic systems, combined with the ability to capture the correlation energy of the homogeneous electron gas, allows to reach high predictive power in the application of density-functional theory. For two-dimensional systems we can achieve this goal by generalizing our previous approximation [Phys. Rev. B 79, 085316 (2009)] to a parameter-free form, which reproduces the correlation energy of the homogeneous gas while preserving the ability to deal with inhomogeneous systems. The resulting functional is shown to be very accurate for finite systems with an arbitrary number of electrons with respect to numerically exact refer…
Free energies, vacancy concentrations, and density distribution anisotropies in hard-sphere crystals: A combined density functional and simulation st…
2010
We perform a comparative study of the free energies and the density distributions in hard sphere crystals using Monte Carlo simulations and density functional theory (employing Fundamental Measure functionals). Using a recently introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009)) we obtain crystal free energies to a high precision. The free energies from Fundamental Measure theory are in good agreement with the simulation results and demonstrate the applicability of these functionals to the treatment of other problems involving crystallization. The agreement between FMT and simulations on the level of the free energies is also reflected in the density distributions …
Multicomponent Density-Functional Theory
2006
The coupling between electronic and nuclear motion plays an essential role in a wide range of physical phenomena.
Laplacian-level density functionals for the exchange-correlation energy of low-dimensional nanostructures
2010
In modeling low-dimensional electronic nanostructures, the evaluation of the electron-electron interaction is a challenging task. Here we present an accurate and practical density-functional approach to the two-dimensional many-electron problem. In particular, we show that spin-density functionals in the class of meta-generalized-gradient approximations can be greatly simplified by reducing the explicit dependence on the Kohn-Sham orbitals to the dependence on the electron spin density and its spatial derivatives. Tests on various quantum-dot systems show that the overall accuracy is well preserved, if not even improved, by the modifications.
Density functional study of two-dimensionalHe4clusters
2005
Binding energies and density profiles of two-dimensional systems of liquid He-4 with different geometries are studied by means of a zero-range density functional adjusted to reproduce the line tension obtained in a previous diffusion Monte Carlo calculation (lambda_{DMC}=0.121 K/A). It is shown that this density functional provides accurate results for the binding energy of large clusters with a reasonable computational effort.
Multicomponent density-functional theory for electrons and nuclei
2006
We present a general multi-component density functional theory in which electrons and nuclei are treated completely quantum mechanically, without the use of a Born-Oppenheimer approximation. The two fundamental quantities in terms of which our theory is formulated are the nuclear N-body density and the electron density expressed in coordinates referring to the nuclear framework. For these two densities coupled Kohn-Sham equations are derived and the electron-nuclear correlation functional is analyzed in detail. The formalism is tested on the hydrogen molecule $H_2$ and its positive ion $H_2^+$ using several approximations for the electron-nuclear correlation functional.
Continuity equation and local gauge invariance for the N3LO nuclear energy density functionals
2011
Background: The next-to-next-to-next-to-leading order (N3LO) nuclear energy density functional extends the standard Skyrme functional with new terms depending on higher-order derivatives of densities, introduced to gain better precision in the nuclear many-body calculations. A thorough study of the transformation properties of the functional with respect to different symmetries is required, as a step preliminary to the adjustment of the coupling constants. Purpose: Determine to which extent the presence of higher-order derivatives in the functional can be compatible with the continuity equation. In particular, to study the relations between the validity of the continuity equation and invari…
Density gradients for the exchange energy of electrons in two dimensions
2009
We derive a generalized gradient approximation to the exchange energy to be used in density functional theory calculations of two-dimensional systems. This class of approximations has a long and successful history, but it has not yet been fully investigated for electrons in two dimensions. We follow the approach originally proposed by Becke for three-dimensional systems [Int. J. Quantum Chem. 23, 1915 (1983), J. Chem. Phys. 85, 7184 (1986)]. The resulting functional depends on two parameters that are adjusted to a test set of parabolically confined quantum dots. Our exchange functional is then tested on a variety of systems with promising results, reducing the error in the exchange energy b…
Density-functional based tight-binding study of small gold clusters
2006
In this paper, we report the ability of self-consistent-charge density-functional based tight-binding method to describe small gold clusters. We concentrate our investigations mainly on anions, and find that the method describes their geometric and electronic structures fairly well, in comparison with density-functional calculations. In particular, the method correctly reproduces the planarity of ground-state structures up to cluster sizes in agreement with experiment and density-functional theory.